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In this EACVI clinical scientific update, we will explore the current use of multi-modality imaging in the diagnosis, risk stratification, and follow-up of 
patients with aortic stenosis, with a particular focus on recent developments and future directions. Echocardiography is and will likely remain the key 
method of diagnosis and surveillance of aortic stenosis providing detailed assessments of valve haemodynamics and the cardiac remodelling response. 
Computed tomography (CT) is already widely used in the planning of transcutaneous aortic valve implantation. We anticipate its increased use as an 
anatomical adjudicator to clarify disease severity in patients with discordant echocardiographic measurements. CT calcium scoring is currently used 
for this purpose; however, contrast CT techniques are emerging that allow identification of both calcific and fibrotic valve thickening. Additionally, 
improved assessments of myocardial decompensation with echocardiography, cardiac magnetic resonance, and CT will become more commonplace 
in our routine assessment of aortic stenosis. Underpinning all of this will be widespread application of artificial intelligence. In combination, we believe 
this new era of multi-modality imaging in aortic stenosis will improve the diagnosis, follow-up, and timing of intervention in aortic stenosis as well as 
potentially accelerate the development of the novel pharmacological treatments required for this disease.
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Introduction
Aortic stenosis (AS) affects 12.4% of adults over the age of 
75 years,1 already accounting for substantial global morbidity and 
premature mortality, that is likely to increase with an aging popula
tion. Yet, the pathology of AS remains poorly understood, and 
there is no effective medical therapy capable of slowing disease 
progression.

Non-invasive imaging, in combination with clinical assessment, has 
played a central role in the assessment and management of AS for 
many decades. In particular, echocardiography remains the reference 
standard; however, other imaging modalities are now increasingly 
being used, providing complementary information that is improving 
our understanding of the underlying biology and helping to guide clin
ical decision-making. This consensus document seeks to complement 
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the recent European Society of Cardiology guidelines,2 providing 
added detail on the role of multi-modality AS imaging in current clin
ical practice as well as a focus on emerging applications and future 
developments.

Pathology
We believe it is important to describe briefly the pathobiology of AS 
with respect to both the valve and myocardium so that we can con
textualize the information provided by each of the individual imaging 
modalities. Recently, there has been a clear shift away from the para
digm of passive ‘wear and tear’ to considering aortic valve stenosis as 
a metabolically active, highly regulated, and potentially modifiable 
disease process.3 In brief, a model for AS is proposed comprising 
both an initiation and propagation phase.4 The early ‘initiation phase’ 
shares many similarities with atherosclerosis. Mechanical stress and 
subsequent injury to the endothelium of the valve leaflets trigger in
flammatory cell infiltration and lipid deposition, regions of which co- 
localize with microcalcification and areas of mineralization.3 These 
changes induce differentiation of valve interstitial cells into activated 
fibroblasts and osteoblasts which promulgate progressive valve fi
brosis and calcification. The trans-differentiation of activated fibro
blasts and osteoblasts signals the start of the ‘propagation phase’. 
Here, progressive thickening and reduced pliability of the leaflets in
crease mechanical stress and cellular injury, thereby establishing a 
self-perpetuating cycle of injury, inflammation, and fibro-calcific leaf
let thickening.4 The ‘propagation phase’ is defined clinically by the in
exorable progression of AS, with baseline assessments of valve 
calcification consistently serving as the most powerful predictors 
of AS progression, outperforming traditional cardiovascular risk 
factors.5,6

The myocardial remodelling response to AS varies between indivi
duals and has an important influence on the development of symp
toms, heart failure, and long-term prognosis. AS causes an increased 
afterload, triggering a hypertrophic remodelling response that re
stores wall stress and cardiac performance for many years in accord
ance with the law of Laplace.7 Importantly, the degree of left 
ventricular hypertrophy is not well predicted by AS severity alone, 
being under the influence of multiple other factors including arterial 
hypertension, sex, and genetic polymorphisms.8 Eventually, the hyper
trophic response decompensates and patients transition to heart fail
ure and the development of adverse clinical events. At the 
pathological level, this left ventricular decompensation relates to pro
gressive diffuse myocardial fibrosis and myocyte cell death triggered 
by the hypertrophied myocardium outgrowing its blood supply.9,10

Alongside increased end-diastolic pressures, capillary rarefaction, 
and arteriolar remodelling, these pathological changes characterize 
left ventricular decompensation and the transition to heart failure, re
sulting in increased myocardial stiffness, reduced contractility, and im
paired cardiac function.

Finally, it is increasingly appreciated that AS and transthyretin 
amyloidosis (ATTR) commonly co-exist [e.g. 16% of transcatheter 
aortic valve implantation (TAVI) candidates,11 most likely reflecting 
the increasing prevalence of the two conditions with advancing 
age12,13].

Echocardiography
Echocardiography is the primary imaging modality for the diagnosis and 
assessment of AS. The purpose of the echocardiographic examination 
in a patient with suspected AS is three-fold: (i) to confirm valve morph
ology and a diagnosis of AS (ii) to grade AS severity and (iii) to assess the 
structure and function of the left ventricle, the other cardiac chambers, 
and the aorta (Figure 1).

Assessments of the aortic valve
Aortic valve morphology
Transthoracic echocardiography is able, in the majority of cases, to de
termine the valve phenotype (tricuspid, bicuspid, unicuspid, or other) 
according to Sievers classification (type 0: no raphe; type 1: one raphe; 
and type 2: two raphes) or a new classification recently proposed by an 
international group of experts.14,15 Transoesophageal echocardiog
raphy (TOE), computed tomography (CT), or cardiac magnetic reson
ance (CMR) can be helpful to clarify aortic valve morphology when 
transthoracic echocardiography is not diagnostic.

Haemodynamic severity of AS
The main echocardiographic parameters to define AS severity are the 
peak aortic jet velocity, peak and mean transvalvular gradients, aortic 
valve area, and Doppler velocity index (DVI).16 Aortic valve area can 
be indexed for body surface area to account for differences in height, 
particularly in those of shorter stature. It should be avoided in obese 
or very thin patients, when indexing to height may be superior. Based 
on these echocardiographic parameters, we can differentiate severe 
from non-severe AS (Table 1).

To avoid underestimation of AS severity, the continuous-wave 
Doppler beam must be aligned parallel to the direction of the stenotic 
jet. This is not predictable from imaging or colour Doppler data and so 
multiple measurements from different positions in the thorax must be 
acquired. It is important to note that velocity and gradients are highly 
flow-dependent and may underestimate AS severity in the presence of 
low-flow states for example in patients with impaired systolic function 
or small cavity size. The aortic valve area, calculated from the continuity 
equation, is widely used as a ‘less flow-dependent’ parameter of AS se
verity that can be employed to assess AS severity even in low-flow states. 
It should be noted that aortic valve area can be prone to measurement 
error, related predominantly to inaccuracies in assessing the left ventricu
lar outflow tract (LVOT) area17 and the simplistic assumption that the 
LVOT is circular rather than oval. Alternatives include the velocity 
time integral (VTI) ratio, which provides a ratio of the VTI at the aortic 
valve and the LVOT18 and therefore avoids measurement of the 
LVOT area completely. In addition, hybrid methods are being explored, 
which calculate the aortic valve area using flow velocities from Doppler, 
alongside measurements of the LVOT area from TOE, CT, or CMR.19

When using these hybrid methods, a larger cut-off value of aortic valve 
area (<1.2 vs. <1.0 cm2) should be applied to define severe AS.

Discordant grading of AS severity at echocardiography
Up to 40% of patients with severe AS have an apparent discordance be
tween the peak velocity/mean gradient and aortic valve area: most com
monly where the aortic valve area indicates severe disease and the peak 
velocity or mean gradient suggest otherwise.20 ‘Discordant grading’ includes 
three main categories: (i) ‘classical’ low-flow, low-gradient AS with stroke 
volume index <35 mL/m2 and with reduced left ventricular ejection frac
tion (<50%); (ii) ‘paradoxical’ low-flow, low-gradient AS with stroke volume 
index <35 mL/m2 but with preserved left ventricular ejection fraction 
(≥50%); and (iii) normal-flow, low-gradient AS with stroke volume index 
≥35 mL/m2 and preserved left ventricular ejection fraction (≥50%).

In cases of low-flow, low gradient AS with low ejection fraction, do
butamine stress echocardiography is recommended.2,21 True severe AS 
is characterized by a fixed aortic valve area (≤1.0 cm2) in the face of an 
increased flow rate. This will result in higher gradients and velocities 
across the stenotic valve (transaortic velocity ≥ 4 m/s and mean pres
sure gradient across the valve of >40 mmHg at any stage of dobutamine 
stress echocardiography). Another important parameter to assess is 
the change in stroke volume with dobutamine administration. An in
crease of stroke volume of <20% is a marker of reduced LV reserve 
and is associated with a worse prognosis and higher peri-operative 
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risk.22 This can help guide decision-making in these higher-risk patients, 
where TAVI would be preferrable to surgical aortic valve replacement 
(AVR). However, recent data assessing the performance of the above 
guideline measures against to the calculated projected aortic valve area 
(AVAproj) from the True or Pseudo Severe Aortic Stenosis (TOPAS) 
study demonstrated that AVAproj was superior to the AVA and haemo
dynamic measures at distinguishing true severe AS from pseudo-severe 
AS and at predicting mortality in medically managed patients.23 A multi- 
modality approach is useful in patients where clinical ambiguity remains.

Assessments of pressure recovery can also be useful, particularly in 
smaller patients with an ascending aorta diameter of less than 30 mm. 
Using pressure recovery to adjust the aortic valve area helps to reclassify 
patients with discordant echocardiography from severe to moderate AS 
with corresponding improvements in prognosis observed.16,24 The final 
alternative that is being increasingly used in patients with discordant echo
cardiography and that is recommended in the European Society of 
Cardiology (ESC) guidelines is CT calcium scoring (section Computed 
tomography). Figure 7 demonstrates a systematic approach to assessing 
these discordant patients (section Computed tomography).25

Assessment of the myocardium
Besides grading AS severity, echocardiography is useful in assessing the 
structure and function of the left ventricle (Figure 1) as well as the other 
cardiac chambers. Left ventricular wall thickness is routinely measured 
on parasternal long-axis views and used to both derive left ventricular 
mass measurements and track progression of the hypertrophic re
sponse. However, at present, the ejection fraction remains the only 
left ventricular measurement recommended by the guidelines to guide 
clinical decision-making and the timing of aortic valve replacement.

Deterioration of left ventricular ejection fraction generally occurs 
late in the course of the disease and is often preceded by the develop
ment of left ventricular diastolic dysfunction. Indeed, left ventricular 
ejection fraction underestimates systolic dysfunction in the presence 
of concentric remodelling or hypertrophy and may thus lack sensitivity 
in patients with AS. Recent observational studies and UK National 
Institute for Health and Care Excellence (NICE) guidelines24 suggest ap
plying a higher cut-off ejection fraction (<55%) to improve its sensitivity 
in detecting subclinical left ventricular systolic dysfunction.

Quality and standardization of 
echocardiographic examination and 
reporting
Echocardiography should be performed in patients with AS, according 
to European Association of Cardiovascular Imaging expert advice for 
image acquisition and analysis.25 A multi-parameter integrative 

approach should be used to grade the severity of AS and of concomi
tant aortic regurgitation if any. The echocardiography report should in
clude the parameters outlined in Table 2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Echocardiographic parameters of severe and very severe AS

Non-severe AS Discordant AS  
(with low flow defined  

as SVI < 35 mL/m2)

Severe AS Very severe AS

Peak jet velocity (m/s) <4.0 3.0–4.0 ≥4.0 ≥5.0

Mean gradient (mmHg) <40 20–40 ≥40 ≥60

AVA (cm2) >1.0 ≤1.0 ≤1.0 <0.6

Indexed AVA (cm2/m2) >0.6 ≤0.6 ≤0.6 <0.4

Patients may have discordant echocardiographic assessments where the above parameters do not agree on the true severity of AS. Most commonly, this is encountered in patients with an 
AVA < 1.0 cm2 and a peak velocity of <4.0 m/s). 
AVA, aortic valve area; AS, aortic stenosis.

Table 2 Essential echocardiographic parameters to 
report in patients with AS

Aortic valve morphology

Aortic valve phenotype Bicuspid
Trileaflet

Severity of valve calcification (mild, moderate, or severe)

AS severity

Peak aortic jet velocity (Vmax)

Mean gradient (mean PG)

Aortic valve area

DVI

Grade of AS severity Mild

Moderate

Severe
Very severe

Discordant (inconclusive on resting TTE)

Assessment of structure and function of the left ventricle and 
other cardiac structures

LV volumes (EDVi and ESVi) and wall thickness measurements

Qualitative LV hypertrophy assessment (mild, moderate, or severe)

Degree of LV diastolic dysfunction

LV ejection fraction (3D or 2D biplane method)

Stroke volume index (low flow < 35 mL/m2)

LV global longitudinal strain

Other echocardiographic data

Indexed left atrial volume

Aorta dimensions Sinus of Valsalva
Sinotubular junction

Ascending aorta

Estimated systolic pulmonary arterial pressure

Degree of right ventricular dysfunction

Severity of any valvular regurgitation or other valve lesions

AS, aortic stenosis; LV, left ventricular; EDVi, indexed end-diastolic volume; ESVi, 
indexed end-systolic volume.
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Developing techniques in the 
echocardiographic assessment of AS
Assessment of left ventricular function
Other echocardiographic techniques are emerging to provide more sen
sitive assessments of left ventricular function in AS. Speckle tracking echo
cardiography provides assessment of myocardial strain. In particular, 
global longitudinal strain appears to provide a more sensitive marker of 
systolic dysfunction than ejection fraction. A threshold of <15% is asso
ciated with AS patients who have a higher risk of adverse outcomes.26

The first phase of left ventricular ejection fraction (EF1) is the per
centage change in left ventricular volume from end-diastole to peak 
aortic valve flow. This has recently been proposed for early identifica
tion of left ventricular dysfunction in AS, with a threshold of <25% 
being associated with an increased risk of adverse events.27

Diastolic dysfunction is another important and relatively well- 
established component of overall left ventricular function. Recent regis
try data demonstrated diastolic dysfunction of grade II and above in 
42% of severe AS patients, with more severe diastolic dysfunction in
crementally associated with cardiovascular mortality and hospitaliza
tions.28 Similarly, left atrial strain, another marker of left ventricular 
diastolic function, has demonstrated an association with increased hos
pitalization and mortality in patients with moderate to severe AS.29

Assessment of other cardiac chambers
Assessment of left atrial dilatation, pulmonary artery pressure, right 
ventricular dysfunction, and tricuspid regurgitation provides incremen
tal information on the stage of disease and may have important prog
nostic implications in patients with AS.30 On this basis, a classification 
for staging the extent of extra aortic valve cardiac damage and heart fail
ure associated with AS has recently been proposed integrating progres
sive involvement of the chambers of the heart31–33 (Figure 2).

This echo assessment of cardiac chamber remodelling may also be 
useful in selecting the optimal type and timing of aortic valve replace
ment with TAVI potentially preferred in patients with more advanced 
damage. Careful consideration should be given to whether the cardiac 
chamber remodelling is due to AS or other co-morbidities (e.g. pul
monary hypertension or right ventricular dysfunction) and therefore 
whether improvement can be expected following aortic valve 
replacement.

Next steps
Large prospective outcome studies and randomized controlled trials 
are now required to assess how these novel echocardiographic mar
kers of left ventricular function and cardiac damage might improve 
the assessment and care of patients with advanced AS. The ongoing 
DANAVR randomized controlled trial is investigating whether echo
cardiographic assessments of diastolic dysfunction might provide a 
more objective marker of left ventricular decompensation in AS and 

optimize the timing of aortic valve replacement (clinicaltrials.gov 
NCT03972644).

Computed tomography
CT calcium scoring
Discordant echocardiographic measurements are common and gov
erned by complex interactions between the ventricle, the valve, and 
systemic arterial compliance.34 It is therefore valuable to have an alter
native, anatomical assessment of disease severity that is truly 
flow-independent, reliable, inexpensive, and reproducible. 
Non-contrast CT aortic valve calcium scoring fulfils this role. As an ana
tomical measure of both valve calcium density and volume, a standar
dized method of assessment has been validated in multiple 
international cohorts, with established sex-specific thresholds for se
vere AS: 1200 AU in women (positive predictive value of 93% and nega
tive predictive value of 79%) and 2000 AU in men (positive predictive 
value of 88% and negative predictive value of 82%)34,35 (Figure 3). CT 
aortic valve calcium scoring is now recommended by both European 
Society of Cardiology and American Heart Association/American 
College of Cardiology Guidelines to help clarify stenosis severity 
when discordant echocardiographic assessments remain 
inconclusive.2,36

Aortic valve CT calcium scoring can be performed quickly with no 
iodinated contrast and a low dose of ionizing radiation (∼1 mSv).37

Measurements are highly reproducible, demonstrate excellent agree
ment with concordant echocardiographic measurements, markers of 
left ventricular decompensation, and provide powerful prediction of 
subsequent clinical events (outperforming echocardiography in both 
regards) in all patient groups including those with discordant grad
ing.38,39 As with any technique, there are limitations which include mo
tion artefact in patients with fast heart rates and occasional difficulty in 
differentiating valve calcification from that in the aortic annulus, aortic 
root, and mitral valve annulus. More fundamentally, CT calcium scoring 
does not account for fibrotic aortic valve thickening, which can lead to 
underestimation of disease severity particularly in younger women with 
bicuspid valves. Finally, although calcium scoring is clinically useful as an 
arbiter of disease severity in cases where echocardiographic measures 
are uncertain, borderline cases are often simply that—borderline—and 
a single value close to the established thresholds should be regarded 
within the broader clinical context.

CT angiography
CT angiography plays an important role in the workup of patients with 
AS being considered for TAVI. An accurate pre-TAVI CT assessment is 
pivotal not only in determining a patient’s eligibility but also for precise 
procedure planning. Imaging is needed to assess the optimal access 
route and to accurately select the optimal size of the valve 
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Figure 2 Integrated echocardiographic assessment of the cardiac chambers to aid in risk stratification in patients with AS.33
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bioprosthesis. The latter is based on co-axial measurements of the an
nulus, a structure which is frequently underestimated by 2D echocardi
ography measurements due to its oval shape. The aim is to achieve 
appropriate anchoring and sealing of the device with the goal of mitigat
ing paravalvular leakage whilst minimizing the risk of annular rup
ture.40,41 Over recent years, cardiac CT has become the reference 
standard imaging modality for TAVI procedure planning. Specific ac
quisition requirements have become standardized, and image analysis 
is performed using dedicated semi-automated approaches41,42 to as
sess coronary anatomy and select the optimum type and size of bio
prostheses and access route, with high intra- and inter-observer 
reproducibility (Figure 4).43–48 In selected cases, CT can also be 
used to provide useful information about coronary anatomy prior 
to intervention.

Developing applications
Contrast-enhanced CT angiography holds promise in refining anatomic 
assessments of AS severity, with advantages over non-contrast ap
proaches. These include high spatial resolution and improved anatom
ical definition, which facilitates assessment of the valve in a uniform en 
face view and differentiation of valve pathology from that in adjacent 
structures. Importantly, both non-calcific and calcific leaflet thickening 
can be quantified, a major potential advantage over CT aortic valve cal
cium scoring (Figure 3). Various cohorts have attempted to derive 
thresholds and correct for variations in contrast load surrounding the 

valve,49,50 Recent studies have demonstrated good inter-observer re
producibility and confirmed that valve fibrosis is more prominent in 
women than men.51 Moreover, indexed fibrocalcific volumes have 
shown a close association with echocardiographic measures of valve 
haemodynamics.34 Further work is now required to establish a rapid 
and generalizable methodology as well as identifying appropriate sever
ity thresholds to guide clinical decision-making.

Contrast-enhanced CT can also provide advanced assessment of the 
myocardium, including the measurement of extracellular volume and 
global longitudinal strain. These demonstrate good agreement with 
CMR and echocardiographic measurements, respectively, may highlight 
dual pathology of AS and cardiac amyloidosis52 and correlate with ad
verse outcomes.53–55 Importantly, these myocardial CT approaches re
quire delayed imaging or retrospective image acquisition across the full 
cardiac cycle, involving additional radiation exposure. More research is 
required to validate these emerging CT methods.

Cardiac magnetic resonance
The ability of CMR to characterize the aortic valve, the myocardium, 
and the aorta make it an attractive imaging modality in AS (Figure 5). 
The major limitations of CMR compared to echocardiography include 
its lack of portability, length of scan, and relative expense, although rapid 
image acquisition protocols have already improved the latter two 
issues.56

Figure 3 CT aortic valve calcium scoring. AS, aortic stenosis; AU, Agatston units; CT, computed tomography; ECV, extracellular volume; Vmax, peak 
velocity. Left panel: Non-contrast–enhanced cardiac CT images of a male patient with discordant aortic valve measurements on echocardiography. 
Areas in yellow are areas of calcium identified by the software (bone, coronary arteries, aortic valve, aorta, and mitral valve). Areas labelled in pink 
were manually selected for calculation of aortic valve calcification, which was scored at 2747 AU (severe AS). Middle and right panels (A–C ): 
Contrast-enhanced CT of three patients identifying regions of valve fibrosis (red, also termed non-calcific leaflet thickening) and calcification (green) 
with calculated fibrocalcific volumes and ratios.

Multi-modality imaging in aortic stenosis: an EACVI clinical consensus document                                                                                              1435
D

ow
nloaded from

 https://academ
ic.oup.com

/ehjcim
aging/article/24/11/1430/7217022 by guest on 20 O

ctober 2025



Assessment of the aortic valve
CMR allows direct and multi-planar visualization of the aortic valve for 
accurate assessment of valve morphology (tricuspid or bicuspid sub
types).57 CMR can help assess AS severity via direct planimetry of valve 
area58 with good agreement with TOE. Importantly, both CMR and 
TOE planimetry measure the anatomic orifice area (i.e. maximum in
stantaneous valve area), which is different to the calculated aortic valve 
area derived from the continuity equation, the effective orifice area. 

This is important, because standard aortic valve area severity thresholds 
are based on the continuity equation and therefore not applicable to 
planimetered aortic valve area measurements, which are generally lar
ger as they are not affected by the physical contraction of flow when 
blood passes through the stenotic orifice.59

AS severity can be assessed using phase-contrast velocity mapping 
that allows visualization and quantification of blood flow through the 
valve.58 Velocities are used to assess AS severity similar to 

Figure 4 Parameters to measure on CT angiography. CT, computed tomography; TAVI, transcatheter aortic valve implantation.
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echocardiographic Doppler measurements and can also accurately quan
tify regurgitant volume, when present. Whilst CMR offers better 
jet alignment compared to echocardiography, however lower temporal 
and spatial resolution means CMR may underestimate the peak velocity.60

These limitations mean that CMR is only used as a third-line imaging tech
nique to assess AS severity after echocardiography and CT, although it can 
prove of particular value in patients with multi-valvular involvement.

Assessment of the aorta
CMR is an excellent clinical tool for the assessment and serial monitor
ing of the thoracic aorta. Like CT, it provides accurate diameter mea
surements but without radiation exposure, allowing the identification 
of aortic dilatation, aneurysm formation, and coarctation.25

TAVI planning and follow-up
CMR can be used as an alternative to CT for TAVI planning, in patients 
with an allergy to iodine-based contrast agents or severe renal impair
ment.61 Post-TAVI, CMR provides accurate quantification of paravalv
ular regurgitation62 and may be useful in those with uncertain 
regurgitation severity on echocardiography.

Assessment of the myocardium
CMR provides reference standard assessments of left ventricular struc
ture (wall thickening, hypertrophy dilatation, and mass–volume ratio)63

and function (ejection fraction and myocardial strain using feature- 
tracking) and should be used in cases where echocardiographic win
dows are poor and ventricular assessments uncertain.

Developing applications
Myocardial fibrosis
The unique strength of CMR is myocardial tissue characterization. 
Non-infarct patterns of late gadolinium enhancement (LGE) can be 

identified in patients with AS as a marker of focal replacement fibro
sis, demonstrating a close association with increased collagen depos
ition and microscars on histology.64 The prevalence of non-infarct 
LGE in severe AS ranges from 27 to 51%65 and is associated with mul
tiple other markers of left ventricular decompensation including im
pairment in systolic and diastolic function, the electrocardiogram 
(ECG) strain pattern, elevated serum biomarkers (e.g. B-type natri
uretic peptide and cardiac troponin), reduced exercise capacity, 
and symptomatic status.66 Once established, further LGE appears 
to accumulate rapidly over time67 and to be irreversible following 
aortic valve replacement.68 The myocardial scar burden that patients 
develop whilst waiting for aortic valve replacement therefore persists 
into the long-term, an important observation given that it also serves 
as a powerful independent predictor of long-term outcomes.65 The 
ongoing EVOLVED randomized controlled trial is investigating 
whether prompt valve replacement in asymptomatic patients with 
severe AS and myocardial scarring improves patient outcomes69

(Clinicaltrials.gov identifier: NCT03094143). Furthermore, distinct 
patterns of non-ischaemic LGE make it possible to identify concomi
tant pathology such as cardiac amyloidosis which is also associated 
with a higher risk of all-cause mortality.70,71

Beyond LGE, T1 mapping and extracellular volume fraction (ECV) 
quantification can identify extracellular matrix expansion: a surrogate 
for fibrosis (both replacement and diffuse interstitial fibrosis) or infil
tration (e.g. amyloidosis).72 Diffuse fibrosis increases with more se
vere AS and left ventricular hypertrophy.67 Unlike the focal fibrosis 
detected by LGE, diffuse fibrosis is largely reversible after aortic valve 
replacement. Indeed, patients with more extensive diffuse fibrosis de
rive a larger benefit in symptoms and left ventricular function follow
ing aortic valve replacement.73 Several recent large multi-centre 
studies of patients with severe AS imaged prior to aortic valve re
placement demonstrated ECV% was associated with markers of left 
ventricular decompensation and both cardiovascular and all-cause 
mortality.74,75

Figure 5 CMR imaging in the assessment of the aortic valve and myocardium. Patient with critical AS. Four-chamber balanced steady-state free pre
cession (bSSFP) cine image (A) showing normal left ventricular cavity size with concentric hypertrophy. Short-axis bSSFP cine image (B) en face view of 
the aortic valve demonstrating fusion of the left and right coronary cusp and a planimetered aortic valve area of 0.6 cm2. Phase-contrast imaging just 
above the aortic valve (C + D) demonstrating a peak velocity of nearly 5 m/s. Bright-blood LGE images demonstrating patchy, non-infarct scar in the 
lateral wall (E). A native T1 map (F ) and ECV map (G) demonstrate no evidence of myocardial infiltration.
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Myocardial perfusion
Stress CMR allows assessment of myocardial ischaemia and measure
ment of myocardial blood flow at rest and stress. The ratio of stress 
and rest myocardial blood flow, known as the myocardial perfusion re
serve, represents the ability of the myocardium to increase blood flow 
during stress. In patients with AS, left ventricular hypertrophy, and un
obstructed coronary arteries, perfusion CMR often demonstrates glo
bal subendocardial perfusion defects and reduction in myocardial 
perfusion reserve due to supply–demand mismatch and a relative re
duction in capillary density.76 Myocardial perfusion reserve is an inde
pendent predictor of exercise capacity77 and symptom onset in 
asymptomatic patients with AS.78 Automated quantification techniques 
producing absolute myocardial blood flow maps have recently over
come complex post-processing and may make this technique more 
accessible.79

Reverse left ventricular remodelling after aortic valve 
replacement
Reverse remodelling after aortic valve replacement is associated with 
early normalization in left ventricular function within 6 months80 and 
20–30% left ventricular mass regression in the first 6–12 months.81,82

Mass decreases most in those with more left ventricular hypertrophy 
and no scar.81 ECV quantification is able to discern cellular from matrix 
volume regression, although more research into this area is re
quired.68,75 De novo LGE is found in a fifth of patients, highlighting 
that new peri-operative myocardial injury may also contribute to 
prognosis.83,84

Other approaches
Other CMR tissue parameters under investigation that may emerge for 
clinical use are T2 mapping for inflammation,85 CMR spectroscopy in
vestigating myocardial energetics,86 manganese-enhanced CMR as a 
marker of myocardial calcium handling,87 and 4D flow to assess the 

complex flow patterns in the aorta that may contribute to 
aortopathy.88

Nuclear imaging
Bone scintigraphy and concomitant 
cardiac amyloid
Bone scintigraphy holds potential clinical value in the detection of con
comitant cardiac amyloidosis in patient.71,89 The most frequent type of 
amyloidosis in the AS population is ATTR. If clinical, ECG, or echocar
diographic features of amyloidosis are identified, bone scintigraphy and 
light chain analysis in blood and urine should be performed to confirm 
the presence and type of concomitant amyloidosis [i.e. exclusion of light 
chain (AL) amyloidosis which requires different management to 
ATTR].90 Although this may have prognostic or treatment implications, 
non-randomized data suggest that TAVI should not be withheld purely 
on the basis of concomitant cardiac amyloidosis, since outcomes in 
cohorts have been better following valve intervention compared to 
medical therapy alone.89,91 Diagnostic algorithms typically include 
99mTc-pyrophosphate (PYP), 99mTc-3,3-diphosphono-1,2-propanodi
carboxylic acid (DPD), or 99mTc-hydroxymethylene diphosphonate 
(HMDP) scintigraphy alongside other clinical, biomarker, and imaging 
investigations.92

Developing applications
Assessing disease activity with positron emission 
tomography
Molecular cardiac imaging with positron emission tomography (PET) 
remains largely investigational for cardiovascular applications but has 
a broad range of potential uses. Hybrid scanners permit combined as
sessments of disease activity provided by PET, with anatomical and 
functional information from CT or CMR. Radiotracers are injected 

Figure 6 18F-sodium fluoride PET–CT for aortic valve calcification. AU, Agatston units; CT, computed tomography; PET–CT, positron emission 
tomography–computed tomography; TBRmax, maximum tissue-to-background ratio. Areas of red and yellow show 18F-sodium fluoride uptake on 
the aortic valve. Areas of maximal uptake at baseline correspond to the development of visible calcification on CT at 14 months. Taken from 
Fletcher & Dweck. 2021. Journal of Nuclear Cardiology.
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intravenously and localize in areas where the disease process of interest 
is active. In principle, the activity of any pathological process can be in
vestigated, subject to the availability of a relevant radiotracer. In prac
tice, these studies have largely focused on assessment of valve 
calcification activity in AS using the tracer 18F-fluoride. Such studies re
main in the research arena but have provided important insights into 
the pathobiology underlying AS. Initial reports demonstrated that calci
fication is the predominant active pathological process in AS, particular
ly in patients with more advanced stenosis where inflammation activity 
assessed by 18F-fluorodeoxyglucose was comparatively lower.93

Subsequent studies have demonstrated that valve 18F-fluoride activity 
can be measured with excellent repeatability94 and provides powerful 
prediction of subsequent disease progression and the need for aortic 
valve replacement (Figure 6).95,96 They have also helped highlight the 
role that lipoprotein(a) plays in both the initiation and propagation 
phases of AS, thereby identifying it as a potential treatment target.97

Whilst the clinical role of 18F-fluoride PET may be limited in AS (CT 
provides similar diagnostic and prognostic information at lower 

expense and radiation exposure), this technique is increasingly being 
used as an endpoint in clinical trials assessing the ability of potential no
vel treatments to reduce valve calcification activity.98

Integrating current clinical 
modalities
Echocardiography remains the mainstay of diagnosis and monitoring 
in patients with AS. It provides vital information on the valve and 
myocardium and is both widely available and cost-effective. In 
many patients, no further imaging is required. However, in certain 
patient groups, additional imaging approaches can improve patient 
assessment and should be given due consideration. An integrated ap
proach, facilitated by a dedicated Heart Valve Team99 is proposed in 
Figure 7.

In patients with discordant echocardiography, additional imaging 
using either CT calcium scoring or stress echocardiography in patients 

Figure 7 The current patient pathway in diagnosing and monitoring AS with the use of multi-modality imaging. AVA, aortic valve area; AS, aortic 
stenosis; ATTR, transthyretin; BNP, beta-natriuretic peptide; CMR, cardiac magnetic resonance; CT, computed tomography; LV, left ventricular; 
TAVI, transcatheter aortic valve implantation. *Features of amyloidosis including but not limited to features of heart failure, carpal tunnel syndrome, 
neuropathy, low-voltage QRS complex on ECG, left ventricular hypertrophy, left ventricular diastolic dysfunction, and granular speckling effect of myo
cardium on echocardiography. Figure created on Biorender.
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with a low-flow state helps clarify AS severity and aids decision- 
making. In patients with suspected aortopathy, CT or CMR should 
be used to provide a comprehensive assessment of the thoracic aor
ta. In patients with suspected concomitant amyloidosis, CMR or 
bone scintigraphy (both with exclusion of light chain disease) is re
commended in the latest ESC guidelines. Similarly in patients with 
left ventricular systolic dysfunction, CMR can clarify whether the im
pairment is due to the valve disease (and might therefore improve 
following aortic valve replacement) or other irreversible process in
cluding myocardial infarction. This can help decision-making around 
the need for valve intervention. Finally, in those patients being con
sidered for valve intervention, CT angiography is now routinely used 
to assess the suitability and access options for the majority of pa
tients prior to TAVI.

The future of multi-modality 
imaging in AS
Novel multi-modality imaging approaches provide the opportunity to 
phenotype patients with AS in exquisite detail. The challenge will be 
to harness this powerful information in order to improve patient as
sessment, treatment, and outcomes in a cost-effective manner. There 
are several areas where these new approaches may have an impact.

Initial diagnosis/screening
Early identification of patients with AS is important. Traditionally, AS is 
identified as an incidental finding upon stethoscope auscultation. 
However, this strategy is limited by the diagnostic accuracy of 

Figure 8 Potential future patient pathway in patients with AS. 18F-NaF, 18F-sodium fluoride; 68Ga-FAPI, 68Ga-labelled fibroblast activation protein 
inhibitor; AI, artificial intelligence; ATTR, transthyretin; AVA, aortic valve area; BNP, beta-natriuretic peptide; CMR, cardiac magnetic resonance; CT, 
computed tomography; ECV, extracellular volume; LGE, late gadolinium enhancement; LV, left ventricle; LVEF, left ventricular ejection fraction; GLS, 
global longitudinal strain; EF1, first-phase ejection fraction; PET, positron emission tomography; TAVI, transcatheter aortic valve implantation. *Features 
of amyloidosis including but not limited to features of heart failure, carpal tunnel syndrome, neuropathy, low-voltage QRS complex on ECG, left ven
tricular hypertrophy, left ventricular diastolic dysfunction, and granular speckling effect of myocardium on echocardiography. Figure created on 
Biorender.
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auscultation, particularly when performed by non-specialists, and also 
by the reduction in direct face-to-face patient contact observed since 
the emergence of COVID-19. Automated stethoscope technology 
may help with this issue, but novel imaging approaches also hold prom
ise. The development of handheld echocardiography might facilitate 
screening programmes in the community to identify patients with AS, 
although the cost-effectiveness of such approaches would have to be 
carefully assessed.100 With smartphone-associated imaging probes 
and artificial intelligence-directed imaging, self-directed patient echo
cardiography may also one day become a reality. The use of artificial in
telligence to identify patients with AS on even simpler tests, such as the 
ECG, also holds promise.101,102A more immediate strategy would be 
the reporting of incidental aortic valve calcification identified on CT 
scans performed for other purposes, providing an opportunity to iden
tify patients with calcific aortic valve disease that is frequently over
looked in current clinical practice.103

Improved pathological understanding
A major priority in AS is the development of an effective medical ther
apy. This will require an improved understanding of the underlying 
pathophysiology. Molecular imaging now allows us to investigate the 
activity of a range of pathological process underlying cardiovascular dis
ease. In AS, future studies may inform the exact contribution of inflam
mation (8F-fluorodeoxyglucose and 68Ga-DOTATATE), calcification 
(18F-fluoride), thrombus (18F-GP1), and fibrosis (68Ga-fibroblast activa
tion protein inhibitor) activity at the different stages of the disease pro
cess and how their relative contributions vary between patient groups. 
Initial PET studies have already identified novel targets for therapy in AS 
and identified important sex differences, suggesting that these ap
proaches may help accelerate the development of novel treatments 
as part of a precision medicine approach.

Valve and myocardial assessments
The anatomic assessment provided by CT may come to play a greater 
role in how we assess and track AS severity, particularly in patients with 
discordant echocardiography or suboptimal echo windows. As has 
been observed in coronary artery disease, there is a natural progression 
from non-contrast to contrast CT angiography, allowing more detailed 
assessment of fibrotic as well as calcific valve thickening. As novel med
ical therapies emerge targeting valve calcification or fibrosis, these con
trast CT assessments may allow us to tailor optimal therapies for 
individual patients and provide an imaging technique able to track the 
effects of new therapies on anatomic disease progression in phase 2 
clinical trials. This can then inform which therapies should proceed to 
phase 3 clinical endpoint trials.104

Advanced multi-modality myocardial assessments by echocardiog
raphy, CMR, and CT may also be increasingly used to track mild to 
moderate AS and the effects of AS on the myocardium and to identify 
more precisely when the left ventricle is starting to decompensate in 
the face of AS, thereby optimizing the timing of aortic valve replace
ment. Finally, the impact of artificial intelligence is likely to be felt in daily 
clinical practice across all the imaging modalities, optimizing and stand
ardizing cardiac imaging.74,105 Figure 8 demonstrates a potential model 
for the future identification and management of patients with AS.

Conclusion
The diagnosis and management of AS continue to evolve and to im
prove, with many exciting imaging techniques in development. 
Echocardiography remains the most important imaging test, playing 
an indispensable role in the diagnosis and monitoring of patients with 
this condition and in clinical decision-making. However, other imaging 
modalities provide complementary information and are increasingly 

being used in complex patients where echocardiographic assessments 
are inconclusive or in the planning of TAVI procedures. A multi- 
disciplinary approach with a Heart Valve Team is recommended by 
the latest ESC guidelines to ensure the appropriate use of multi- 
modality imaging and to optimize the care provided to our AS patients.
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